New Solar Panel Technologies Drive Down Costs −

New Technology Perovskite solar panels outperform silicon panels.

Published on July 27th, 2015 | by Steve Hanley


New Solar Panel Technologies Drive Down Costs

July 27th, 2015 by

New solar panel technologies are poised to drive down the cost of solar power even more. Recently, we reported on new technology that makes solar panels out of perovskite modules. In fact, Varun Sivaram, Samuel Stranks, and Henry Snaith have written an article for Scientific American about the wonders of perovskite solar cells, which have achieved stunning results in the laboratory. Sivaram says, “[M]any of us believe this is the field’s biggest breakthrough since the original invention of the solar cell sixty years ago.”

Perovskite Panels Have Faster Payback

Perovskite solar panels outperform silicon panels.One principal advantage perovskite solar panels have over conventional solar technology is that they can be engineered to react to many different wavelengths of light. That lets them convert more of the sunlight that strikes them into electricity.

Now a study by scientists at Northwestern University and the US Department of Energy’s Argonne National Laboratory finds the perovskite based panels pay for themselves much faster than traditional solar panels do, according to a Northwestern University press release.

Employing a cradle-to-grave lifecycle assessment, scientists traced the production costs of both types of solar panels from the mining of raw materials until the end of their useful life. They determined the ecological impacts of making a solar panel and calculated how long it would take to recover the energy invested.

Even though perovskite panels are less efficient that silicon-based panels, they still may be less expensive in the long run. “People see 11 percent efficiency and assume it’s a better product than something that’s 9 percent efficient,” said Fengqi You, corresponding author on the paper and assistant professor of chemical and biological engineering at Northwestern. “But that’s not necessarily true.”

A more comprehensive way to compare solar technology is the energy payback time (or energy return on investment, EROI), which also considers the energy that went into creating the product. Perovskites lag behind silicon in conversion efficiency, but they require much less energy to be made into a solar module. So perovskite modules pull ahead with a substantially shorter energy payback time — the shortest, in fact, among existing options for solar power.

One of the motivations for this study was the need to improve technology so that solar energy can be scaled up in a big way. “Soon, we’re going to need to produce an extremely high number of solar panels,” one of the authors of the study says. “We don’t have time for trial-and-error in finding the ideal design. We need a more rigorous approach, a method that systematically considers all variables.”

“Appreciating energy payback times is important if we want to move perovskites from the world of scientific curiosity to the world of relevant commercial technology,” says Seth Darling, an Argonne scientist and co-author on the paper.

Global energy demand is expected to nearly double by 2050, and Darling says there is no question that solar power must contribute a significant fraction. The real question, he says, is, “How quickly do we have to get a technology to market to save the planet? And how can we make that happen?”

Say Hello To Organic Semiconductors

Another report in Science Daily focuses on a breakthrough by researchers at Kaunas University of Technology in Switzerland. Its organic chemistry laboratory has developed an organic material which is a much cheaper alternative to the inorganic material currently being used in silicon-based solar cells. The efficiency of the semi-conductors created by the team of KTU’s chemists was confirmed at Swiss Federal Institute of Technology Lausanne.

“The material created by us is considerably cheaper and the process of its synthesis is less complicated than that of the currently used analogue material. Also, both materials have very similar efficiency of converting solar energy into electricity. That means that our semiconductors have similar characteristics to the known alternatives, but are much cheaper,” says professor Vytautas Getautis, head of the chemistry research group responsible for the discovery.

The tests at the Federal Institute of Technology revealed outstanding results: the new organic material converts 16.9% of solar energy into electricity. There are only a few organic semiconductors in the world that have such a high solar cell efficiency.

How Cheap Is Cheap?

The world of solar energy has two interesting new contenders for the solar panel market. One, perovskites, cost far less to produce, shortening payback times from years to months. The other, a new organic solar cell, promises high efficiency at half the cost of silicon.

Just when you thought solar panels couldn’t get any cheaper, they might. There is little doubt that, in the near future, price improvements will take place in the fields of inverter technology and battery electric storage as well.

When that happens, the grip  of the utility monopoly will finally be broken and the world will be well on the way to abundant, renewable, and affordable energy.

Don't forget to follow Solar Love on Facebook, Twitter, Google+, and/or RSS!! Do it for the sun.

Tags: , , , ,

About the Author

writes about the interface between technology and sustainability from his home in Rhode Island. You can follow him on Google + and on Twitter.

  • Mike Dill

    I cannot yet find these things on the market, and have yet to see the long-term reliability numbers. I do hope that these new technologies prove to be something that I can put on my roof and boat.

Back to Top ↑