Solar Love
  • Rooftop Solar
    • Energy Storage
  • Solar Panels
  • Policy
  • Research
    • Science
    • Market Research
    • Solar Perceptions & Polls

Solar Love

  • Rooftop Solar
    • Energy Storage
  • Solar Panels
  • Policy
  • Research
    • Science
    • Market Research
    • Solar Perceptions & Polls
ScienceSolar Research

New Solar Cell Material Approach To Advance Solar Cell Efficiency

by Zach April 24, 2013
written by Zach April 24, 2013
New Solar Cell Material Approach To Advance Solar Cell Efficiency

Another day, another scientific advancement in solar technology. This one is from the University of Illinois:

“When designing next generation solar energy conversion systems, we must first develop ways to more efficiently utilize the solar spectrum,” explained Lane Martin, whose research group has done just that.

“This is a fundamentally new way of approaching these matters,” said Martin, who is an assistant professor of materials science and engineering (MatSE) at Illinois. “From these materials we can imagine carbon-neutral energy production of clean-burning fuels, waste water purification and remediation, and much more.”

Lane Martin

Lane Martin

Martin’s research group brought together aspects of condensed matter physics, semiconductor device engineering, and photochemistry to develop a new form of high-performance solar photocatalyst based on the combination of the TiO2 (titanium dioxide) and other “metallic” oxides that greatly enhance the visible light absorption and promote more efficient utilization of the solar spectrum for energy applications. Their paper, “Strong Visible-Light Absorption and Hot-Carrier Injection in TiO2/SrRuO3 Heterostructures,” appears in the journal Advanced Energy Materials.

According to Martin, the primary feature limiting the performance of oxide-based photovoltaic and/or photocatalytic systems has traditionally been the poor absorption of visible light in these often wide band gap materials. One candidate oxide material for such applications is anatase TiO2, which is arguably the most widely-studied photocatalyst due to its chemical stability, non-toxicity, low-cost, and excellent band alignment to several oxidation-reduction reactions. As the backbone of dye-sensitized solar cells, however, the presence of a light-absorbing dye accounts for a large band gap which limits efficient usage of all but the UV portion of sunlight.

“We observed that the unusual electronic structure of SrRuO3 is also responsible for unexpected optical properties including high absorption across the visible spectrum and low reflection compared to traditional metals,” stated Sungki Lee, the paper’s first author. “By coupling this material to TiO2 we demonstrate enhanced visible light absorption and large photocatalytic activities.”

The correlated electron metal SrRuO3 exhibits strong visible slight absorption. Overlaid here on the AM1.5G solar spectrum, it can be seen that SrRuO3 absorbs more than 75 times more light than TiO2. The structural, chemical, and electronic compatibility of TiO2 and SrRuO3 further enables the fabrication of heterojunctions with exciting photovoltaic and photocatalytic response driven by hot-carrier injection.

“SrRuO3 is a correlated electron oxide which is known to possess metallic-like temperature dependence of its resistivity and itinerant ferromagnetism and for its widespread utility as a conducting electrode in oxide heterostructures,” Lee added. Referring to this material as a “metal,” however, is likely inappropriate as the electronic structure and properties are derived from a combination of complex electronic density of states, electron correlations, and more.

 

Using a process called photo-excited hot-carrier injection from the SrRuO3to the TiO2, the researchers created new heterostructures whose novel optical properties and the resulting high photoelectrochemical performance provide an interesting new approach that could advance the field of photocatalysis and further broaden the potential applications of other metallic oxides.

This work provides an exciting new approach to the challenge of designing visible-light photosensitive materials and has resulted in a provisional patent application. The work was primarily supported by the ongoing International Institute for Carbon Neutral Energy Research (I2CNER) program, a partnership between Kyushu University in Japan and the University of Illinois.

“The I2CNER project brings together some of the leading energy researchers from around the globe,” explained I2CNER Director Petros Sofronis, who is also a professor in the Department of Mechanical Science and Engineering at Illinois.  “Results from Dr. Martin’s research group and others demonstrate that I2CNER is not only an experiment on international collaboration. It is a concerted institutionalized effort to pursue green innovation and reduced CO2 emissions, as well as to advance fundamental science and develop science-based technological solutions for the reorganization of sustainable and environmentally friendly society.”

solar cell efficiencyUniversity of Illinois
0 comment
0
FacebookTwitterPinterest
Zach

is the director of CleanTechnica, the most popular cleantech-focused website in the world, and Planetsave, a world-leading green and science news site. He has been covering green news of various sorts since 2008, and he has been especially focused on solar energy, electric vehicles, and wind energy since 2009. Aside from his work on CleanTechnica and Planetsave, he's the founder and director of Solar Love, EV Obsession, and Bikocity. To connect with Zach on some of your favorite social networks, go to ZacharyShahan.com and click on the relevant buttons.

previous post
Solar Junction To Provide Solar Cells For European Space Agency
next post
Hawaii Solar Power Infographic

You may also like

Global Solar Installations To Exceed 104 Gigawatts In...

April 16, 2018

Report: US Energy Storage Market To Triple In...

March 10, 2018

Top New York Solar Installers

November 10, 2017

North Carolina Solar Energy (In Depth)

September 20, 2017

How Do Solar Panels & Solar Energy Work?

August 22, 2017

Solar Power Now Least Expensive Source Of Electricity...

March 5, 2017

Amazon Turns To Rooftop Solar To Boost Its...

March 3, 2017

Giant UFOs Are Stealing Solar Power From The...

November 30, 2016

SEIA Identifies Top 10 Users Of Commercial Solar

November 28, 2016

Tesla & SolarCity Shareholders Get Green Light From...

November 7, 2016

Follow Me

Facebook

Recent Posts

  • Meet PVCase: A 3D Solar Design Software That Every PV Designer Should Consider

    June 12, 2019
  • Mitsui To Partner With Indian Company For Distributed Solar Projects

    June 10, 2019
  • India’s NTPC Offers Solar Project Management Services To ISA Members

    June 9, 2019
  • Equinor & Scatec Solar Complete 162 Megawatt Brazilian Solar Plant

    November 29, 2018
  • Gamesa Awarded 400 Megawatt Solar Project In Egypt

    November 29, 2018
  • Facebook

@2019 - All Right Reserved solarlove.org


Back To Top