Solar Love
  • Rooftop Solar
    • Energy Storage
  • Solar Panels
  • Policy
  • Research
    • Science
    • Market Research
    • Solar Perceptions & Polls

Solar Love

  • Rooftop Solar
    • Energy Storage
  • Solar Panels
  • Policy
  • Research
    • Science
    • Market Research
    • Solar Perceptions & Polls
Consumer ElectronicsScienceSolar Research

Rainbows From Nanotechnology To Improve Solar Cells

by James Ayre November 22, 2012
written by James Ayre November 22, 2012
Rainbows From Nanotechnology To Improve Solar Cells

 
Researchers from King’s College London have developed a detailed process to separate colors and create ‘rainbows’ on a metal surface by utilizing nanoscale structures. This method will likely lead to improved solar cells and LED displays, according to the researchers.

The modern discovery of how to separate and project different colors was actually also made at King’s College, more than 150 years ago. This discovery led to the development of color televisions and other displays. In modern research, the primary goal has been for the manipulation of color on the nanoscale. When this capability is further developed it will lead to great changes in imaging and spectroscopy, the sensing of chemical and biological agents, and also (likely) to better solar cells, LED displays, and TV screens.

In the new research, light of different colors was ‘trapped’ at different positions of a nanostructured area, by using nanostructures designed specifically for this function. Specific to the nanostructure’s geometry, a ‘trapped’ rainbow “could be created on a gold film that has the dimension on the order of a few micrometers — about 100 times smaller than the width of a human hair.”

Professor Anatoly Zayats explains: “Nanostructures of various kinds are being considered for solar cell applications to boost light absorption efficiency. Our results mean that we do not need to keep solar cells illuminated at a fixed angle without compromising the efficiency of light coupling in a wide range of wavelengths. When used in reverse for screens and displays, this will lead to wider viewing angles for all possible colors.”

The primary difference between natural rainbows and these artificial rainbows is that the researchers can actually control where and in what order the colors appear, simply by altering the nanostructures’ parameters. And in addition to this, they can also separate colors to appear on different sides of the nanostructures.

Co-author Dr Jean-Sebastien Bouillard says: “The effects demonstrated here will be important to provide ‘color’ sensitivity in infrared imaging systems for security and product control. It will also enable the construction of microscale spectrometers for sensing applications.”

“The ability to couple light to nanostructures with multicolour characteristics will be of major importance for light capturing devices in a huge range of applications, from light sources, displays, photo detectors and solar cells to sensing and light manipulation in optical circuits for tele and data communications.”

The new research is published in Nature’s Scientific Reports.

Source: King’s College London
Image Credits: Dr. Jean-Sebastien Bouillard, Dr. Ryan McCarron

LED nano rainbowsLEDsRainbows nanoscale structuressolar cellssolar cells nano particlessolar cells rainbowssolar rainbowsTVs
2 comments
0
FacebookTwitterPinterest
James Ayre

's background is predominantly in geopolitics and history, but he has an obsessive interest in pretty much everything. After an early life spent in the Imperial Free City of Dortmund, James followed the river Ruhr to Cofbuokheim, where he attended the University of Astnide. And where he also briefly considered entering the coal mining business. He currently writes for a living, on a broad variety of subjects, ranging from science, to politics, to military history, to renewable energy. You can follow his work on Google+.

previous post
New Solar Technology Creates Steam Without Boiling Water
next post
1st Crowdfunding Site For Clean Energy?

You may also like

Global Solar Installations To Exceed 104 Gigawatts In...

April 16, 2018

Report: US Energy Storage Market To Triple In...

March 10, 2018

Top New York Solar Installers

November 10, 2017

North Carolina Solar Energy (In Depth)

September 20, 2017

How Do Solar Panels & Solar Energy Work?

August 22, 2017

Solar Power Now Least Expensive Source Of Electricity...

March 5, 2017

Amazon Turns To Rooftop Solar To Boost Its...

March 3, 2017

Giant UFOs Are Stealing Solar Power From The...

November 30, 2016

SEIA Identifies Top 10 Users Of Commercial Solar

November 28, 2016

Tesla & SolarCity Shareholders Get Green Light From...

November 7, 2016

Follow Me

Facebook

Recent Posts

  • Meet PVCase: A 3D Solar Design Software That Every PV Designer Should Consider

    June 12, 2019
  • Mitsui To Partner With Indian Company For Distributed Solar Projects

    June 10, 2019
  • India’s NTPC Offers Solar Project Management Services To ISA Members

    June 9, 2019
  • Equinor & Scatec Solar Complete 162 Megawatt Brazilian Solar Plant

    November 29, 2018
  • Gamesa Awarded 400 Megawatt Solar Project In Egypt

    November 29, 2018
  • Facebook

@2019 - All Right Reserved solarlove.org


Back To Top